Description The DigiFlex® Performance™ (DP) Series digital servo drives are designed to drive brushed and brushless servomotors. These fully digital drives operate in torque, velocity, or position mode and employ Space Vector Modulation (SVM), which results in higher bus voltage utilization and reduced heat dissipation compared to traditional PWM. The drive can be configured for a variety of external command signals. Commands can also be configured using the drive's built-in Motion Engine, an internal motion controller used with distributed motion applications. In addition to motor control, these drives feature dedicated and programmable digital and analog inputs and outputs to enhance interfacing with external controllers and devices. This DP Series drive features a CANopen interface for networking and a RS-232 interface for drive configuration and setup. Drive commissioning is accomplished using DriveWare® 7, available for download at www.a-m-c.com. All drive and motor parameters are stored in non-volatile memory. | Power Range | | |--------------------|-------------------------------| | Peak Current | 15 A (10.6 A _{RMS}) | | Continuous Current | 7.5 A (7.5 A _{RMS}) | | Supply Voltage | 40 - 190 VDC | ### **Features** - ▲ Four Quadrant Regenerative Operation - Space Vector Modulation (SVM) Technology - ✓ Fully Digital State-of-the-art Design - Programmable Gain Settings - Fully Configurable Current, Voltage, Velocity and Position Limits - PIDF Velocity Loop - ▲ PID + FF Position Loop - Compact Size, High Power Density - 16-bit Analog to Digital Hardware - On-the-Fly Mode Switching - On-the-Fly Gain Set Switching ### MODES OF OPERATION - Profile Current - Profile Velocity - Profile Position - Cyclic Synchronous Current Mode - Cyclic Synchronous Velocity Mode - Cyclic Synchronous Position Mode ### **COMMAND SOURCE** - ±10 V Analog - PWM and Direction - Encoder Following - Over the Network - Sequencing - Indexing - Jogging ### **FEEDBACK SUPPORTED** - ±10 VDC Position - Halls - Incremental Encoder - Auxiliary Incremental Encoder - Tachometer (±10 VDC) ### INPUTS/OUTPUTS - 3 High Speed Captures - 3 Programmable Analog Inputs (16-bit/12-bit Resolution) - 2 Programmable Analog Outputs (10-bit Resolution) - 2 Programmable Digital Inputs (Differential) - 6 Programmable Digital Inputs (Single-Ended) - 4 Programmable Digital Outputs (Single-Ended) #### **COMPLIANCES & AGENCY APPROVALS** - UL - cUL - CE Class A (LVD) - CE Class A (EMC) - RoHS ## **BLOCK DIAGRAM** | | Information on Approvals and Compliances | |-----------------|--| | c FL °us | US and Canadian safety compliance with UL 508c, the industrial standard for power conversion electronics. UL registered under file number E140173. Note that machine components compliant with UL are considered UL registered as opposed to UL listed as would be the case for commercial products. | | (€ | Compliant with European CE for both the Class A EMC Directive 2004/108/EC on Electromagnetic Compatibility (specifically EN 61000-6-4:2007 and EN 61000-6-2:2005) and LVD requirements of directive 2006/95/EC (specifically EN 60204-1:2006), a low voltage directive to protect users from electrical shock. | | ROHS | RoHS (Reduction of Hazardous Substances) is intended to prevent hazardous substances such as lead from being manufactured in electrical and electronic equipment. | | L | Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com | ## **SPECIFICATIONS** | | | Power Specifications | | | |---|----------|--|--|--| | Description | Units | Value | | | | DC Supply Voltage Range | VDC | 40 - 190 | | | | DC Bus Over Voltage Limit | VDC | 198 | | | | DC Bus Under Voltage Limit | VDC | 35 | | | | Logic Supply Voltage | VDC | 40 - 190 | | | | Maximum Peak Output Current ¹ | A (Arms) | 15 (10.6) | | | | Maximum Continuous Output Current ² | A (Arms) | 7.5 (7.5) | | | | Maximum Continuous Output Power | W | 1353.8 | | | | Maximum Power Dissipation at Continuous Current | W | 71.3 | | | | Internal Bus Capacitance | μF | 20 | | | | Minimum Load Inductance (Line-To-Line) ³ | μH | 250 | | | | Switching Frequency | kHz | 20 | | | | Maximum Output PWM Duty Cycle | % | 100 | | | | Low Voltage Supply Outputs | - | +5 VDC (250 mA) | | | | | | Control Specifications | | | | Description | Units | Value | | | | Communication Interfaces | - | CANopen (RS-232 for configuration) | | | | Command Sources | - | ±10 V Analog, Encoder Following, Over the Network, PWM and Direction, Sequencing, Indexing, Jogging | | | | Feedback Supported | - | ±10 VDC Position, Auxiliary Incremental Encoder, Halls, Incremental Encoder, Tachometer (±10 VDC) | | | | Commutation Methods | - | Sinusoidal, Trapezoidal | | | | Modes of Operation | - | Profile Current, Profile Velocity, Profile Position, Cyclic Synchronous Current Mode, Cyclic Synchronous Velocity Mode, Cyclic Synchronous Position Mode | | | | Motors Supported | - | Closed Loop Vector, Single Phase (Brushed, Voice Coil, Inductive Load), Three Phase (Brushless) | | | | Hardware Protection | - | 40+ Configurable Functions, Over Current, Over Temperature (Drive & Motor), Over Voltage, Short Circuit (Phase-Phase & Phase-Ground), Under Voltage | | | | Programmable Digital Inputs/Outputs (PDIs/PDOs) | - | 8/4 | | | | Programmable Analog Inputs/Outputs (PAIs/PAOs) | - | 3/2 | | | | Primary I/O Logic Level | - | 5V TTL | | | | Current Loop Sample Time | μs | 50 | | | | Velocity Loop Sample Time | μs | 100 | | | | Position Loop Sample Time | μs | 100 | | | | Maximum Encoder Frequency | MHz | 20 (5 pre-quadrature) | | | | | | echanical Specifications | | | | Description | Units | Value | | | | Agency Approvals | - | CE Class A (EMC), CE Class A (LVD), cUL, RoHS, UL | | | | Size (H x W x D) | mm (in) | 132.5 x 89.5 x 35.9 (5.2 x 3.5 x 1.4) | | | | Weight | g (oz) | 495 (17.5) | | | | Heatsink (Base) Temperature Range ⁴ | °C (°F) | 0 - 65 (32 - 149) | | | | Storage Temperature Range | °C (°F) | -40 - 85 (-40 - 185) | | | | Form Factor | - | Panel Mount | | | | Cooling System | - | Natural Convection | | | | IP Rating | - | IP10 | | | | AUX COMM Connector | - | 3-pin, 2.5 mm spaced, enclosed, friction lock header | | | | COMM Connector | - | Shielded, dual RJ-45 socket with LEDs | | | | FEEDBACK Connector | - | 15-pin, high-density, female D-sub | | | | I/O Connector | - | 26-pin, high-density, female D-sub | | | | POWER Connector | - | 6-pin, 3.96 mm spaced, friction lock header | | | ### Notes - Capable of supplying drive rated peak current for 2 seconds with 10 second foldback to continuous value. Longer times are possible with lower current limits. Continuous A_{rms} value attainable when RMS Charge-Based Limiting is used. Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements. Additional cooling and/or heatsink may be required to achieve rated performance. - 2. - 3. 4. # **PIN FUNCTIONS** | | А | UX COMM - RS232 Communication Connector | | |-----|----------|---|------| | Pin | Name | Description / Notes | 1/0 | | 1 | RS232 RX | Receive Line (RS-232) | I | | 2 | RS232 TX | Transmit Line (RS-232) | 0 | | 3 | ISO GND | Isolated Signal Ground | IGND | | | | COMM - CAN Communication Connector | | |-----|----------|------------------------------------|------| | Pin | Name | Description / Notes | 1/0 | | 1 | CAN_H | CAN_H Line (Dominant High) | I | | 2 | CAN_L | CAN _L Line (Dominant Low) | I | | 3 | CAN_GND | CAN Ground | CGND | | 4 | RESERVED | Reserved | - | | 5 | RESERVED | Reserved | - | | 6 | RESERVED | Reserved | - | | 7 | CAN_GND | CAN Ground | CGND | | 8 | RESERVED | Reserved | - | | | | FEEDBACK - Feedback Connector | | |-----|------------|---|------| | Pin | Name | Description / Notes | 1/0 | | 1 | HALL A+ | | I | | 2 | HALL B+ | Commutation Sensor Inputs | I | | 3 | HALL C+ | | I | | 4 | MOT ENC A+ | Differential Encoder A Channel Input (For Single Ended Signals Use Only The Positive | I | | 5 | MOT ENC A- | Input) | I | | 6 | MOT ENC B+ | Differential Encoder B Channel Input (For Single Ended Signals Use Only The Positive | I | | 7 | MOT ENC B- | Input) | I | | 8 | MOT ENC I+ | Differential Encoder Index Input (For Single Ended Signals Use Only The Positive Input) | I | | 9 | MOT ENC I- | Differential Encoder index input (For Single Ended Signals Ose Only The Positive input) | I | | 10 | HALL A- | Commutation Sensor Input (For Differential Signals Only) | I | | 11 | HALL B- | Commutation Sensor Input (For Differential Signals Only) | I | | 12 | SGN GND | Signal Ground | SGND | | 13 | +5V OUT | +5V Encoder Supply Output (Short Circuit Protected) | 0 | | 14 | PAI-3 | Programmable Analog Input (12-bit Resolution) | I | | 15 | HALL C- | Commutation Sensor Input (For Differential Signals Only) | I | | | | I/O - Signal Connector | | |-----|---|---|------| | Pin | Name | Description / Notes | 1/0 | | 1 | PDO-1 | Programmable Digital Output | 0 | | 2 | SGN GND | Signal Ground | SGND | | 3 | PDO-2 | Programmable Digital Output | 0 | | 4 | PAI-1 + (REF+) | Differential December 1 Analysis Institute of Computer (40 his December) | I | | 5 | PAI-1 - (REF-) | Differential Programmable Analog Input or Reference Signal Input (16-bit Resolution) | I | | 6 | PAI-2 | Programmable Analog Input (12-bit Resolution) | I | | 7 | PAO-1 | Programmable Analog Output (10-bit Resolution) | 0 | | 8 | PAO-2 | Programmable Analog Output (10-bit Resolution) | 0 | | 9 | PDI-8 - (DIR- / AUX ENC B- / CAP-C-) | Programmable Digital Input or Direction or Auxiliary Encoder or High Speed Capture (Leave Open for Single-Ended Signal) | I | | 10 | PDO-3 | Programmable Digital Output | 0 | | 11 | PDI-1 | Programmable Digital Input | I | | 12 | PDI-2 | Programmable Digital Input | I | | 13 | PDI-3 | Programmable Digital Input | 1 | | 14 | PDO-4 | Programmable Digital Output | 0 | | 15 | +5V OUT | +5V Encoder Supply Output (Short Circuit Protected) | 0 | | 16 | SGN GND | Signal Ground | SGNI | | 17 | PDI-7 + (PWM + / AUX ENC A+ / CAP-
B+) | Programmable Digital Input or PWM or Auxiliary Encoder or High Speed Capture | I | | 18 | PDI-8 + (DIR+ / AUX ENC B+ / CAP-C+) | Programmable Digital Input or Direction or Auxiliary Encoder or High Speed Capture | 1 | | 19 | PDI-4 (CAP-A) | Programmable Digital Input or High Speed Capture | I | | 20 | PDI-5 | Programmable Digital Input | I | | 21 | PDI-6 | Programmable Digital Input | I | | 22 | SGN GND | Signal Ground | SGNI | | 23 | RESERVED | Reserved | - | | 24 | RESERVED | Reserved | - | | 25 | RESERVED | Reserved | - | | 26 | PDI-7 - (PWM- / AUX ENC A- / CAP-B-) | Programmable Digital Input or PWM or Auxiliary Encoder or High Speed Capture (Leave Open for Single-Ended Signals) | I | | | | POWER - Power Connector | | |-----|--------------|--|------| | Pin | Name | Description / Notes | 1/0 | | 1 | MOTOR A | Motor Phase A | 0 | | 2 | MOTOR B | Motor Phase B | 0 | | 3 | MOTOR C | Motor Phase C | 0 | | 4 | HIGH VOLTAGE | DC Power Input | I | | 5 | PWR GND | Power Ground (Common With Signal Ground) | PGND | | 6 | LOGIC PWR | Logic Supply Input | İ | ## HARDWARE SETTINGS ### **Switch Functions** | Switch | Description | Setting | | | |--------|---|---------|-----|--| | SWITCH | Description | On | Off | | | 1 | Bit 0 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 2 | Bit 1 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 3 | Bit 2 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 4 | Bit 3 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 5 | Bit 4 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 6 | Bit 5 of binary CANopen node ID. Does not affect RS-232 settings. | 1 | 0 | | | 7 | Bit 0 of drive CANopen bit rate setting. Does not affect RS-232 settings. | 1 | 0 | | | 8 | Bit 1 of drive CANopen bit rate setting. Does not affect RS-232 settings. | 1 | 0 | | ### Additional Details The drive can be configured to use the address and/or bit rate stored in non-volatile memory by setting the address and/or bit rate value to 0. Use the table below to map actual bit rates to a bit rate setting. | Bit Rate (kbits/sec) | Value For Bit Rate Setting | |-------------------------------|----------------------------| | Load from non-volatile memory | 0 | | 500 | 1 | | 250 | 2 | | 125 | 3 | ## **Jumper Settings** | Jumper | Description | | Configuration | | |--------|---|-----------------------------|---------------------|----------| | | Header Jumper | Not Installed | Pins 1-2 | Pins 2-3 | | J1 | CAN bus termination. Install this jumper (2.54mm) on the last drive in a CAN network. This jumper is located on a 4-pin header adjacent to the RS-232 connector. It consists of the two pins furthest from the connector. | Non-
terminating
Node | Terminating
Node | N/A | | J2 | Reserved. | - | - | N/A | # **MECHANICAL INFORMATION** | Connector Information | | 3-pin, 2.5 mm spaced, enclosed, friction lock header | |-----------------------|---------------------|--| | Mating Connector | Details | Phoenix: Plug P/N 1881338 | | Mating Connector | Included with Drive | Yes | | | | 3 ISO GND 2 RS232 TX 1 RS232 RX | | | (| COMM - CAN Communication Connector | |-----------------------|---------------------|---| | Connector Information | | Shielded, dual RJ-45 socket with LEDs | | Moting Connector | Details | AMP: Plug P/N 5-569552-3 | | Mating Connector | Included with Drive | No | | | | CAN_GND 7 CAN_GND 3 CAN_L 2 CAN_H 1 7 CAN_GND | | | | FEEDBACK - Feedback Connector | |-----------------------|---------------------|--| | Connector Information | | 15-pin, high-density, female D-sub | | Mating Connector | Details | TYCO: Plug P/N 748364-1; Housing P/N 5748677-1; Terminals P/N 1658670-2 (loose) or 1658670-1 (strip) | | | Included with Drive | No | | | | MOT ENC B+ 6 | | | | POWER - Power Connector | |-----------------------|---------------------|--| | Connector Information | | 6-pin, 3.96 mm spaced, friction lock header | | Mating Connector | Details | AMP: Plug P/N 770849-6; Terminals P/N 770522-1 (loose) or 770476-1 (strip) | | | Included with Drive | Yes | | | | | ## MOUNTING DIMENSIONS ### PART NUMBERING INFORMATION DigiFlex® Performance™ series of products are available in many configurations. Note that not all possible part number combinations are offered as standard drives. All models listed in the selection tables of the website are readily available, standard product offerings. ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quickturn customs capabilities, ADVANCED Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability. Feel free to contact Applications Engineering for further information and details. ### **Examples of Customized Products** - Optimized Footprint - Private Label Software - **OEM Specified Connectors** - No Outer Case - **Increased Current Resolution** - Increased Temperature Range - **Custom Control Interface** - Integrated System I/O - Tailored Project File 4 - Silkscreen Branding - Optimized Base Plate - **Increased Current Limits** - Increased Voltage Range - Conformal Coating 4 - Multi-Axis Configurations 4 - Reduced Profile Size and Weight ### **Available Accessories** ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system. Visit www.a-m-c.com to see which accessories will assist with your application design and implementation. All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.